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A computer model is described which uses mixed-integer linear programming to
provide optimal DSN spacecraft schedules given a mission set and specified scheduling
requirements. A solution technique is proposed which uses Benders’ Method and a

heuristic starting algorithm.

l. Introduction

The DSN optimal scheduling problem refers to the problem
of assigning tracking times to a set of spacecraft over a speci-
fied period of time, given the view periods of the spacecraft
and a set of restrictive tracking requirements. For a typical
DSN tracking situation, this is a complex decision-making
problem with many variables and constraints.

A mixed-integer linear mathematical programming model is
presented which may serve as a basis for both sophisticated
constraint checking and automated optimal scheduling. A
solution technique is proposed which uses a combination of
Benders’ Method and a heuristic algorithm. The proposed
Benders’ algorithm uses standard linear programming for the
continuous variable subproblem and specialized 0,1 integer
programming for the discrete variable subproblem. The pro-
posed model will offer great facility for altering or updating
the constraint set (tracking requirements) and is amenable to
modern interactive computer graphics technology.

A prototype computer model was developed using the
mixed-integer linear model and a standard mixed-integer pro-
gramming subroutine. An experimental study was conducted
using this model. The results of this study demonstrated the
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need for a decomposition technique such as Benders’ Method
and development of a specialized heuristic starting algorithm
for the 0, 1 integer subproblem.

ll. Problem Description
A. Problem Statement

The DSN spacecraft (S/C) scheduling problem is stated as:
given the station rise and set times of a number of S/C at each
of three locations (Goldstone, Australia, and Spain) and speci-
fied tracking requirements and constraints for each S/C, deter-
mine a tracking schedule which maximizes the total tracking
time over all S/C and stations.

B. 24-Hour and N -Day Scheduling Models
The problem was formulated and explored in two ways:

(1) Develop an optimization model to determine a 24-hour
tracking schedule which reflects tracking requirements.

(2) Develop an optimization model to determine a detailed
N-day tracking schedule which reflects tracking require-
ments.




The first approach, that of determining a 24-hour schedule,
is used to formulate and solve for an optimal tracking schedule
using linear programming. The 24-hour tracking schedule
model may be used to study the allocation of resources por-
tion of the DSN scheduling problem and to develop a basic
facility for the problem.

The second approach, that of determining a N-day schedule
is more difficult. The N-day model may be used for determin-
ing real-time or actual DSN schedules. The N-day scheduling
problern is nonlinear as it includes determining the sequence or
order of S/C tracking as well as the linear resource allocation
problem.

C. Possible Constraints for the Scheduling Model

In both the 24-hour and N-day models, the objective func-
tion chosen is the maximization of the total tracking time over
all S/C and all stations. This form is a good candidate for a
representation of DSN utilization. Several types of require-
ments or constraint possibilities were considered and are stated
as follows:

(1) Minimum and maximum tracking pass length.
(2) Number of tracking passes per scheduling period.

(3) Minimum and maximum station-to-station overlap of
tracking passes.

(4) Tracking on consecutive days or stations.
(5) Minimum elevation angle for tracking.
(6) Station handover or S/C switching time.
(7) Antenna selection at a station complex.
(8) S/C tracking time priority.

(9) Minimum and maximum acquisition of signal (AOS)
and loss of signal (LOS) times.

(10) Pre- and post-calibration periods.

(11) Station downtime or maintenance periods.

Several of these constraint types were considered in developing
the 24-hour model, and all were investigated in developing the
N-day model.

lll. 24-Hour Spacecraft Scheduling Model
A. Problem Formulation and Definitions

Given a subnet of DSN 64-meter Deep Space Stations at
Goldstone, Australia, and Spain, and a view period schedule
for n S/C at each station, the problem is to maximize the total

daily tracking time subject to specified constraints for the
missions.

For a given set of missions and corresponding daily view
period schedule, a tracking schedule is defined as follows: for
each view period, a station either does not track the S/C at all
or tracks the S/C for a single subinterval of the view period. A
station may track only one S/C at a time and each S/C is only
tracked by one station at a time. Each tracking period must
satisfy the minimum duration parameter 6. Also, in the usual
case, weighting constraints on the relative total daily tracking
time between missions are imposed. These weighting con-
straints are specified in the form of either equality .or inequal-
ity constraints.

For each station, it is assumed that the # tracking periods
are either continuous or disjoint subintervals of the cyclic
24-hour day. It is assumed that the » tracking periods occur in
the same cyclic order as the rise times of the Goldstone view
periods. Although the view periods for a S/C generally overlap
stations in the east-west cyclic order of the stations (e.g.,
Goldstone, Australia, Spain, Goldstone), the view period con-
figuration does not change much from station to station, on a
given day, and this choice almost always provides an optimum
schedule.

The problem may now be formulated as a linear program
whose variables provide the start and end times of the tracking
periods for each S/C at each station required to provide
maximum tracking time (given the above assumptions). Let
the view period of S/C i and station j have rise and set times 1y
and 5;;. The set times may be shifted by 24 hours so that 0 <
ty < 24, ry < L < ty + 24. The tracking period for S/C i and
station j is (r,-j t oz, 8- w,.]-), where z; and wy are the
non-negative variables of the linear program. Figure 1 illus-
trates these variables. Table 1 provides a list of variables and
parameters used in the problem formulation.

B. Obijective Function

The objective function to be maximized is the total
weighted tracking time for n S/C, over stationsj,j = 1, 2, 3.

Let the view'pefiod rise time for S/C i and station j be ty
and the view period set time for S/C 7 and station j be 5;- The
tracking time, T};, of S/C i at station j is

TU = (Sl'j - WU) - (rl'j + zl']') (1)

and the total tracking time for S/C 7 over all stations is

T, =3 T,

i=1,2,--.n. (2)
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The objective function is then formulated as

n
max E ¢, TT, 3)

i=1

or

n 3
max%Z —cl.[z (wij+zl.j)] +c'} (4)
i=1 j=1
C. Constraints

The constraints for the 24-hour linear programming model
included the following:

(1) Minimum tracking period.

(2) No overlap of tracking periods for a given S/C.

(3) No overlap of S/C tracking periods for a given station.

(4) Weighting of S/C tracking time inequality constraints.

As an example of a constraint formulation, the minimum
tracking period constraint is presented. The minimum tracking

period constraint states that the tracking periods for S/C i at
station j have. duration = 61;'- The constraint is

Ty = (s wy) = Oy +2y) =8 ®
or
Z,tw <ot 8y (6)
i=1,2-,n
j=1,23.

The constraints for the 24-hour linear programming model
are described in detail in Ref. 1.

IV. Mixed-Integer Linear Programming
N -Day Scheduling Model

A. Continuous Variable Allocation Model

The variables for the linear programming model are the
continuous linear programming rise variable z and the set
variable w. The 24-hour model is actually an allocation model
in that the order of S/C tracking is assumed; in this case all §/C
are always tracked at each station in the order of rising over
the Goldstone station. Also, the objective function and all of
the constraints are linear in the variables, z and w, of the
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problem. The allocation problem here is the assignment of
specific acquisition of signal (AOS) and loss of signal (LOS)
times as determined by the optimal values of z and w in the
linear programming solution.

The linear programming allocation problem may be written
as '

min ¢'x
Ax<b (7)
x=0

where ¢ is an n-vector of weighting coefficients (¢’ is the
transpose of ¢), x is an m-vector of the continuous linear
programming variables z and w, 4 is a m X n matrix of
coefficients of the constraint equations, and b is a m-vector of
the right-hand side constants of the constraint equations. The
problem may be easily converted from a minimization prob-
lem to a maximization problem by using the fact that max
g(x) = - min - g(x). The x-vector is non-negative because
negative value of either z or w would mean that tracking
begins outside the view period, which is not realistic.

B. N-Day Sequencing Problem

The N-day scheduling problem, where N > 1, is actually an
allocation problem for each arbitrary 24-hour period and a
sequencing (or S/C ordering) problem over the N-days. This is
so because in the general case, over any N-day scheduling
period, the number of tracking passes for any S/C may be <N.
Therefore, optimal decisions must be made concerning which
days to track which S/C. It is no longer applicable to track all
S/C simply in the order of Goldstone rise as for the 24-hour
model.

The sequencing or, in this case, the S/C ordering problem is,
in general, a nonlinear problem and linear programming is no
longer applicable. This is because the ordering possibilities
must be modeled using discrete integer variables; i.e., a S/C is
either tracked within a particular view period or it is not.
Because it is a yes/no decision, the problem may be set up so
that the variables take on only O or 1 values. These variables
are commonly called indicator variables and, for the N-day
scheduling problem, indicate whether or not a particular S/C is
tracked within each specified view period. So, for a tracking
situation with i S/C, j stations, and & days the number of
indicator variables required is i k. As a typical example, for a
scheduling problem with 6 S/C, 3 stations and 7 days, 126
integer indicator variables are required. Each set of values of
the indicator variables represents a particular S/C order. The
number of possible S/C orderings is 2¥%. For the example




given, the number of possible S/C orderings is 2126 or 8.5 X
10%7. For each order specified by the indicator variables, a
S/C allocation problem must be soived in order to determine
its objective function value so that the optimal schedule may
be found. Obviously, the N-day optimal scheduling problem is
a large-scale optimization problem with potentially severe
computational considerations.

C. Formulation of Switching Constraints

The purpose of the switching constraints is to set up the
lower and upper bounds on the tracking pass lengths for each
possible view period. For a given view period (recall there is
one for each S/C, station, and day), let LB denote the lower
bound and UB denote the upper bound, and y be the 0,1
indicator variable. The constraints are called switching con-
straints because the set (LB, UB) goes to (0,0) as the indicator
variable steps from 1 to 0. In the latter case the tracking pass is
switched out and the S/C is not tracked within this view
period. For this particular view period, let T be the tracking
pass length where, from the previous section,

T=(G(-w-r-2) (8)
The set of switching constraints for this view period is

T=0

T<UB

T<LB+(y-1)M )
T<yM

y=20orl

where M is an arbitrarily large number. Note that zero always
satisfies the upper bound constraint but not the lower bound
constraint. Therefore, the lower bound must either be some
value LB >0 or included as zero if no lower bound is speci-
fied. Also, if no minimum or maximum tracking pass length is
specified, LB = 0 and UB = length of the tracking pass (s - #).
In this case there are redundant equations in the constraint set.

D. Formulation of Other Constraint Types

The form of the switching constraints is such that it
includes both the continuous variables z and w and the dis-
crete 0.1 variable y. It is possible to write all of the constraint
types mentioned in terms of these variables. This includes
tracking on consecutive days and stations, number of tracking
passes required during V days, station and S/C overlap require-
ments, antenna switching options, and minimum elevation
angle requirements. Also, since the equations or inequalities
_representing these constraints are additively separable, the

formulation of the problem may be divided into two subprob-
lems, one containing only the continuous variables z and w,
and the other containing only the discrete 0,1 variables.

E. Formulation of the N-Day Scheduling Model

A math programming problem which contains both con-
tinuous and discrete variables is called a mixed-integer pro-
gram. Since the optimal scheduling problem also has a linear
objective function and only linear constraints in the con-
tinuous variables, it is a mixed-integer linear programming
problem. Mixed-integer linear programming (MILP) problems
are a specific category of optimization problems in the field of
operations research, and there are several solution techniques
available for these problems in the literature. These problems
are often of a large-scale nature and are typically computa-
tionally difficult.

The form of the constraint set suggests that by rearranging
all equations and inequalities, so that the continuous variable
and discrete 0.1 variables are separate, the problem may be
solved by dealing with the continuous and discrete subprob-
lems separately. The objective function also may be separated
into a continuous variable and discrete variable portion. There
are several solution procedures which take advantage of a
separable structure. These procedures frequently couple two
individual solution procedures and iterate between them. In
this case, the continuous subproblem may be solved by linear
programming and the discrete 0,1 variable subproblem solved
by a specialized 0,1 integer programming algorithm.

Let x be an n-vector of z and w continuous variables and y
be a p-vector of discrete 0,1 variables; ¢ is an n-vector of
weighting coefficients for the continuous variables and c is a
p-vector of weighting constraints for the 0,1 discrete variables.
Rearranging continuous and discrete variables, the problem
form is

minc'x +¢'y
subject todx + Ay = b (10)

x=20,yeY

where 4 and A are m X nandm X p coefficient matrices,
respectively, for the constraint set and b is a m-vector of
right-hand side constants of the constraint set. Y is the subset
of the set of integer variables which contains only the values 0
and 1. Recall that the left-hand subproblem is a continuous-
variable linear problem and the right-hand subproblem is a
nonlinear problem.

157




V. Results of Prototype Study

A prototype computer model was developed using the
mixed-integer linear programming model presented. A stan-
dard mixed-integer subroutine was used to solve typical
example DSN scheduling problems. The computer program
was designed to be run in an interactive graphics mode. This
enables a user to sit at an interactive graphics terminal and
conveniently and efficiently make scheduling decisions. The
effects of potential changes to the current schedule are quickly
presented on the video display.

The prototype study positively demonstrated the feasibility
of developing a mathematical model and interactive computer
tool to aid in making complex DSN scheduling decisions. The
following advantages of such an automated tool were
identified:

(1) Scheduling decisions could be made very efficiently
using graphics terminals in an interactive mode.

(2) Better schedules would result in terms of network
utilization or other selected criteria.

(3) Less effort and time would be required by the
schedulers.

(4) Conflicts could be resolved in a systematic way if
“desired.

(5) Clear-cut criteria for conflict resolution choices could
be provided.
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(6) Manual scheduling will always be possible and auto-
mated decisions may be overridden.

As a result of this study it was also determined that a more
powerful solution procedure needed to be developed to solve
complex scheduling problems more efficiently. It is out of this
need that the proposed development of a solution procedure
using Benders’ Method and a heuristic starting algorithm
evolved. The theoretical basis of Benders’ Method and its
application to the DSN optimal spacecraft scheduling problem
are presented in an appendix.

VI. Further Development

Plans for further development of the optimal spacecraft
scheduling model include the following steps:

( 1) Develop a mixed-integer linear programming computer
model which uses Benders’ Method for solution of the
DSN scheduling problem.

(2) Develop an efficient heuristic starting algorithm to use
in the Benders’ Model.

(3) Present test data for the model using actual DSN sched-
uling examples.

(4) Provide favorable comparisons, both in efficiency and
results, between the research model and the current
DSN scheduling procedure.
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Table 1. Definition of problem variables and parameters

r

i

Sy
Zy

Wy

View period rise time for S/C i and station

View period set time for S/C i and station/

Linear program rise variable for S/C { and station j
Linear program set variable/ fo; S/C i and station j
Tracking time for S/C { at station/

Total tracking time for S/C i over all stations

Minimum tracking period duration for S/C i and station j

Objective function tracking time weighting for §/C




TRACKING PERIOD T

.

SET TIME s\

\ MINIMUM TRACKING
RISE TIME r PERIOD DURATION &

Fig. 1. Tracking period and linear programming variables
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Appendix
Solution of the N -Day Scheduling Problem by Benders’ Method

The form of the N-day scheduling problem as formulated
by a mixed-integer linear programming model lends itself very
well to solution by Benders’ partitioning algorithm for mixed-
variable optimization problems. Benders’ Method may be used
on mixed-integer programming problems which are separable
into the linear and nonlinear (integer) portions. The separable
subproblems may then be solved individually to determine
their individual optimal solutions and summed to determine
the optimum of the original problem. This partitioning proce-
dure takes up less computer storage and allows the usage of
specialized techniques for each portion of the problem. For
example, linear programming may be used for the linear part
of the problem. The method also allows the use of a good
initial schedule which may be detérmined by a heuristic
algorithm and, thus, save considerable time in arriving at
optimal solution.

. Theoretical Basis of Benders’ Method

Benders’ Method may be applied to an optimization prob-
lem of the form

min ¢'x + £ ()

subject todx + F(y) = b » problem (A-1)

x =2 0,yeY
where min g(x) = - max - g(x).

For this discussion, the matrix 4 is m X n, x and ¢ are
n-vectors (¢’ is the transpose of c), y is a-p-vector, f is a
scalar-valued function of y, F is an m-vector whose compo-
nents are functions of y, b is an m-vector, and Y an arbitrary
subset of E7. The functions f and F need not be linear; in fact,
for the scheduling problem Y is the set of variables in £¢ with
integral values components. Problem P will be referred to as
the primal problem. For the scheduling problem, x is the set of
continuous variables which determine the allocation of track-
ing passes and Y is the vector of integer variables which
describe the tracking frequency and order.

Since P is linear in x for fixed values of y, it is natural to
attempt to solve it by fixing y, solving a linear program in x,
obtaining a “better” y, etc. Of course, only values of y for
which there exist x satisfying the resulting linear constraints
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may be considered. That is, ¥ must lie in the set

Y

]

yeY|dx>034x=b-F()} (A-2)

]

eYl Y @B-F») <0,j=1,-+,K} (A3)

where v/ are all (K of these) of the simplex multipliers of
Phase I of the simplex method. The simplex method is a
two-phase procedure for finding an optimal solution to linear
programming problems. Phase I finds an initial basic feasible
solution if one exists, or gives the information that one does
not (in which case the constraints are inconsistent and the
problem has no solution). Phase II uses this solution as a
starting point and either finds a minimizing solution or yields
the information that the minimum is unbounded (i.e., = ). So
Y is the set of all y e Y such that you get feasible constraints
for problem P. A feasible right-hand side does not exist unless
that right-hand side makes an obtuse angle with every one of
the Phase I simplex multipliers.

Define the function o(b,») as

o(®-F(®) = minc'x
subject toAx = b - F(y) (A-4)
x =0,

Now if y € ¥ then o(b - F(y) <eo, andif y e Y ~ ¥ (i.e., if y
is not feasible), then o = + oo
(A-5)

Recall from linear programming duality theory that if y is
feasible then

minc’x = max 7w [b- F(»)] (A-6)

where 7 is the set of dual variables corresponding to the primal
problem min ¢'x. Ler {a', -, '} be all possible optimal
simplex multiplier vectors from Eq. (A-6). Then fory e ¥,

max 7 [b-F ()] (A-7)

i}

o[b-F(y)]

i=1,-,J.




Rewrite problem P as

min £(¥) + min ¢'x

ye¥ subject todx = b-F(») (A-8)
x =2 0.
Recall from classical optimization theory that
min f(x, ¥) = min min f(x, y). (A-9)
%y y x
The form of problem (A-8) now becomes
min {f(y) + o [b~F ()]} (A-10)
subject to
Y B-FO] <0 j=1,.K
yeY.
Substituting further from duality theory
min {f(¥) + max 7 [b- F(Y)]} (A-11)
i=1,J
subject to
Y [B-Fp)l <0 j=1,,K
yevyY.
Recalling that
min f(x) = minn
xeX n-fx)=0 (A-12)
x=0,

probiem (A-11) may be written as

min 9
subject to
n=fO)tmaxa [b-FO)] i =1,--,J
024 b-F)] j =1,,K
yeY (A-13)
or
min
subject to
n=f)ta [b-F@))
0>+ [b-F@)] i=1,-"-,J » ProblemM.
yeY i=1,,K (A-14)

Problem M will be referred to as the master problem and is
equivalent to problem P. Problem M includes all of the simplex
multipliers of Phases I and II of the simplex method applied to
Problem P. In general, it has many constraints. Furthermore,
the constraints are not known explicitly because the simplex
multipliers #‘ and v/ are not known.

Il. Application of Benders’ Method to the
N -Day Scheduling Problem

The original problem, Problem P, is restated from the
previous subsection as

min ¢'x + F(¥)

subject toAx + F(y) = b Problem P (A-15)

x=20,yeY

This problem may be rewritten in the form of the DSN
scheduling probiem by introducing slack variables to convert
equality constraints to inequality constraints and by using the
fact that max g(x) = - min - g(x). The x-vector represents the
continuous w and z variables which determine the tracking
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pass allocations for a given tracking order, and the y variables
are the 0,1 switching variables which determine the order and
frequency of tracking. Decomposition allows the continuous
variable subproblem to be solved by linear programming and
the 0,1 integer problem to be solved by specialized 0,1 integer
programming algorithms. Solving each of the subproblems
separately results in a savings of computer storage required by
breaking a large problem into two smaller ones. Time savings
in arriving at a solution results from taking advantage of linear
programming for the continuous subproblem and a specialized
algorithm for the 0,1 integer subproblem. Also, considerable
computing time may be saved by making a good choice of the
starting schedule to begin the Benders’ procedure.

To solve the scheduling problem using Benders’ Method, let
¥° € Y be the initial scheduling order (e.g., the scheduling
order resulting from the schedule determined by a heuristic
algorithm). Solve-the primal problem, Problem P, as a function
of y° where

o(-F(»°) = minc'x (A-16)
subject to
Ax =.b-F(@°)
x = 0.

This subproblem represents the schedule allocation problem
given the sequence specified by order ¥° and may be solved by
linear programming. Let x° be an optimal solution, and let 7°
be the vector of optimal simplex multipliers.

Let UB éf(y) +o(b - F(Y)) be defined as the upper bound
on the objective function for the scheduling order specified by
. For the initial schedule y°,

UB® = f(3°) + 0 (b -F(°)) .

(A-17)
Now solve the first relaxed master problem,
min n
subject ton = f(¥) +a° [b-F(»)]. (A-18)

yeY

Recall that a relaxed master problem has fewer constraints
than the master problem M. For the N-day scheduling problem
this is a 0,1 integer program problem which may be solved by
specialized techniques. Let (n', ») be the solution. Note that
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7’ is a lower bound for P since the objective function is being
minimized for more constraints at each iteration and must
have an equal or higher value. Define the lower bound on
problem P as -

LB & »n

where ' < UB®. Now if LB = UB at any iteration, an optimal
solution has been found and the algorithm stops. If at any
iteration LB = n < UB, solve the linear program,

min ¢'x

o[b-F()] =
subject todx = b-F (') (A-19)
x=0

and determine a new x' which represents a new schedule
allocation. The algorithm is continued in this manner until
LB = UB (or the bounds are sufficiently close to meet some
tolerance criteria).

Suppose at some iteration the set of constraints
Ax = b-F(") (A-20)

x=20

is infeasible. In this case, Phase I of the simplex method will
generate a ¥’ so that

¥ [b-F()] >0. (A-21)
A new relaxed master problem is formulated as
min
subject ton = f)+ 7' [b-F¥)] (A-22)

0 =7 [b-F@)

y e Y

Let (n%,%) be the optimal solution to this 0,1 integer pro-
gramming problem. Note that 7% must be at least as large as n'
because another constraint has been added.




On the other hand, suppose ' € Y (i.e., is feasible); solve
for

min ¢'x

od-FO") =
subject todx = b-F(y") (A-23)
x =20

and let x' be an optimal solution. Let #’ be an optimal simplex
multiplier vector. Set UB' = min {UB°, f(y') + o [b - F(¥')]}
so that if the new value is smaller than the previous upper
bound then it becomes the new upper bound. Note that while
lower-bound values are monotonically increasing at each itera-
tion, the upper bounds are not generally monotonically
decreasing.

If at some iteration LB' = ' = UB' and an optimal schedule
has been found, then the ¥’ vector of 0,1 integers specifies the
order of spacecraft tracking throughout the N days and the x'
vector specifies the acquisition and loss of signal times for each
tracking pass. If n’ < UB', a new constraint is added to the
relaxed master problem, a new y' is determined, and a new
iteration is performed.

lil. A Heuristic Starting Schedule for the
Benders’ Model

Recall that the first step in implementing Benders’ Method
for the NV-day scheduling problem is to solve the subproblem

min ¢'x

o(-F(@°) =
subject todx = b~-F(¥°) (A-24)
x>0

where »° is a vector which represents the order of S/C tracking
during the scheduling period. This subproblem may generally
be solved fairly easily by linear programming, even for large
problems. The resulting solution, x, may then be used to
determine a new y', and the iterative process continues.

The vector ¥° is easily determined from the schedule which
is determined using a heuristic algorithm. Note that the actual
allocation of acquisition and loss of signal times is not of
interest here and this fact may play a role in determining the
heuristic algorithm. Also, note that the upper bound, UB,
which is a function of the y vector,

UB = fr)+to[b-FQ), (A-25)

is not monotonic since the functions f(») and F(») are non-
linear. However, a well-designed heuristic algorithm which
results in good suboptimal initial scheduling orders, specified
by the y° vector, may result in a saving of perhaps 80% or
more of the computational time normally required for deter-
mining optimality starting with an arbitrarily chosen »°.
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